
Data Analysis and Quality Control for NOAA's Hydrometeorological Testbed Program

Elizabeth Ellis Pennsylvania State University Earth Systems Research Lab – Physical Sciences Division Dr. Allen White

Introduction

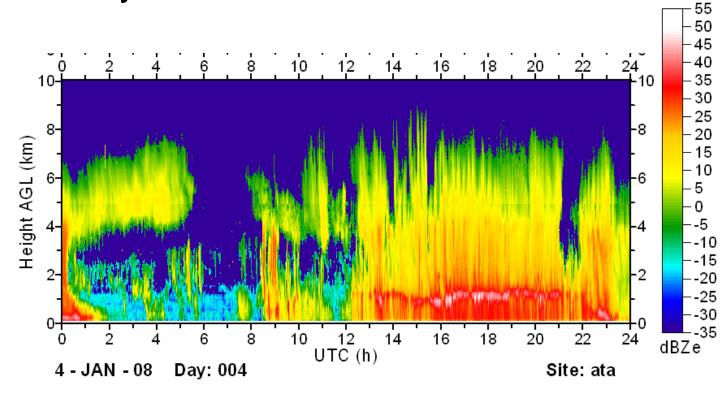
- Senior at Penn State University
- Pursuing degrees in meteorology and energy business and finance
- Interned in Boulder, CO at the Earth Systems Research Laboratory – Physical Sciences Division (NOAA's Office of Oceanic and Atmospheric Research)

Introduction

- Senior at Penn State University
- Pursuing degrees in meteorology and energy business and finance
- Interned in Boulder, CO at the Earth Systems Research Laboratory – Physical Sciences Division (NOAA's Office of Oceanic and Atmospheric Research)

Introduction

- Senior at Penn State University
- Pursuing degrees in meteorology and energy business and finance
- Interned in Boulder, CO at the Earth Systems Research Laboratory – Physical Sciences Division (NOAA's Office of Oceanic and Atmospheric Research)


Outline

- Precipitation and brightbands
- Hydrometeorological Testbed (HMT) Program
- Rainfall process partitioning
- Visualizing BB data
- Why this is important...

What is a brightband?

• A brightband is a layer of enhanced radar reflectivity.

Precipitation 101

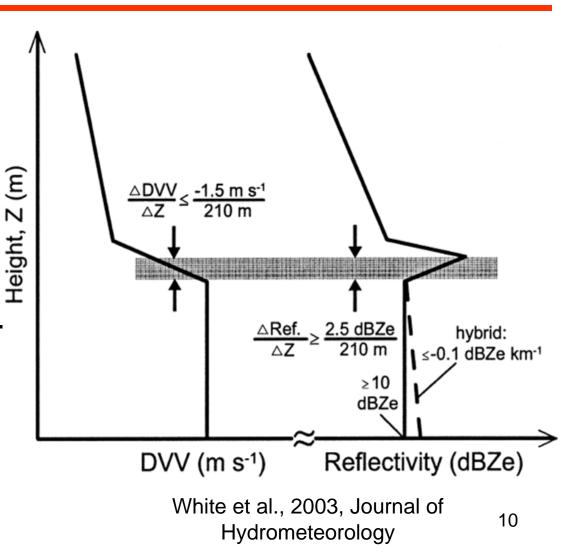
2.4

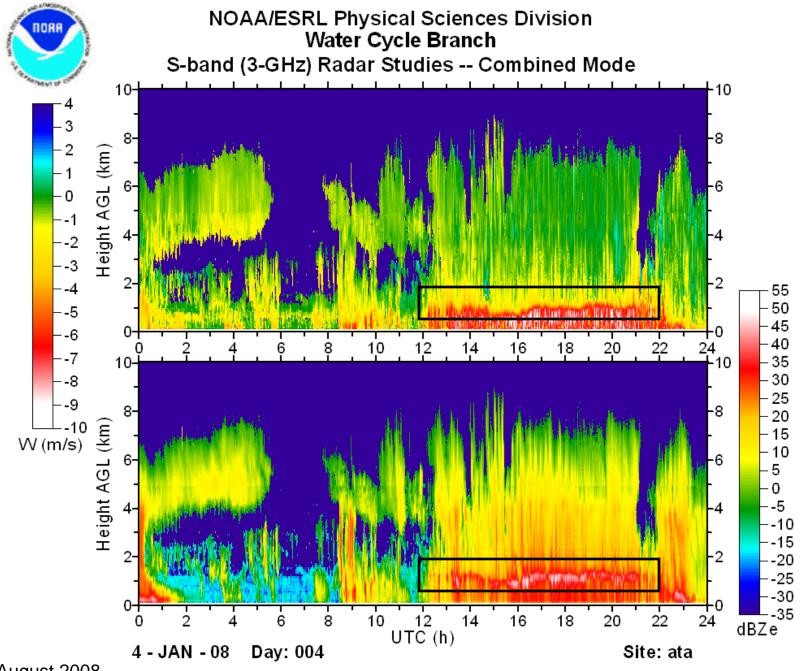
- Precipitation that has a radar brightband starts as snow.
- It melts on its way to the surface.
- The brightband height can be used as a proxy for snow level.

4 August 2008

White et al., 2002, Journal of Atmospheric and Oceanic Technology

NOAA's HMT Program


- Providing near real time snow level data can help improve runoff/flooding forecasts.
- Snow level information is also important for emergency response crews, road maintenance, ski industry, etc.



Rainfall Process Partitioning

Over 210 meters...

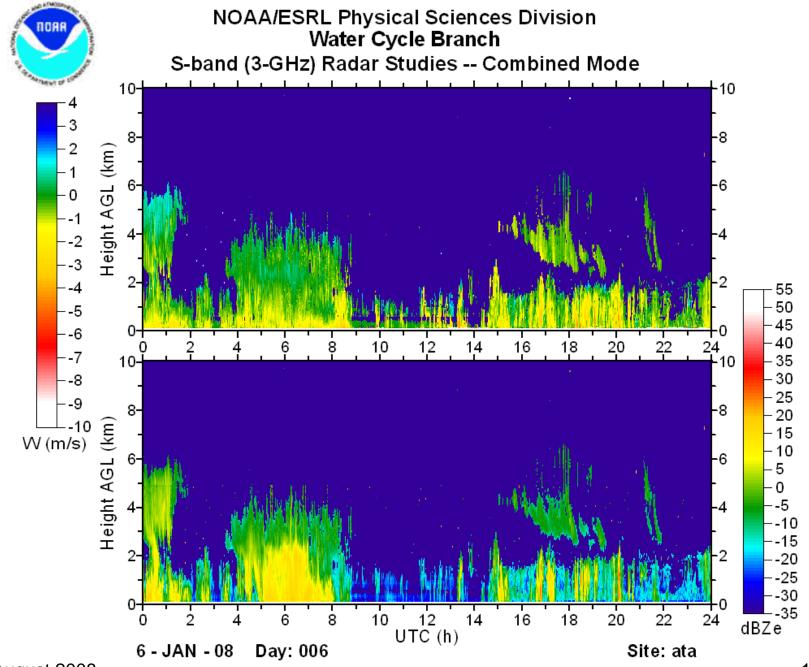
- Increase in reflectivity – at least 2.5 dBZ
- Decrease in vertical velocity at least 1.5 m/s

4 August 2008

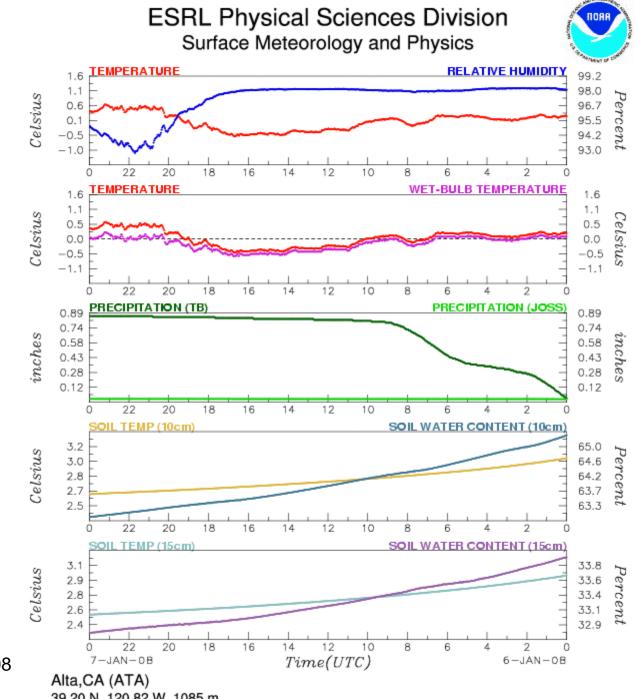
Rainfall Process Partitioning

	A	В	С	D	E	F	G	Н		.1
1	6	0	30	1.778	15	11	0	11	-9.999	warm
2	6	30	100	2.032	15	6	0	6	-9.999	warm
3	6	100	130	1.524	15	6	0	6	-9.999	warm
4	6	130	200	1.016	15	2	0	2	-9.999	warm
5	6	200	230	0.508	15	0	0	0	-9.999	neither
6	6	230	300	0.762	15	4	0	4	-9.999	warm
7	6	300	330	0.254						
8	6	330	400	0.508	15	0	0	0	-9.999	neither
9	6	400	430	0.254						
10	6	430	500	0.508	15	2	1	1	0.442	cold
11	6	500	530	1.016	15	12	0	12	-9.999	warm
12	6	530	600	1.016	15	12	0	12	-9.999	warm
13	6	600	630	1.778	15	15	0	15	-9.999	warm
14	6	630	700	1.778	15	15	0	15	-9.999	warm
15	6	700	730	1.778	15	12	2	10	2.032	warm
16	6	730	800	1.524	15	5	0	5	-9.999	warm
17	6	800	830	1.27	15	0	0	0	-9.999	neither
18	6	830	900	0.508	15	0	0	0	-9.999	neither
19	6	900	930	0.254						

 If the algorithm detects a brightband in 50% or more of the profiles, it is labeled "cold."


Quality Control

- Compare
 - Tables of warm/cold rain
 - Reflectivity plots
 - Time series of temperature



Rainfall Process Partitioning

	A	В	С	D	E	F	G	Н		·
1	6	0	30	1.778	15	. 11	0	11	-9.999	warm
2	6	30	100	2.032	15	6	0	6	-9.999	
3	6	100	130	1.524	15	6	0	6	-9.999	warm
4	6	130	200	1.016	15	2	0	2	-9.999	warm
5	6	200	230	0.508	15	0	0	0	-9.999	neither
6	6	230	300	0.762	15	4	0	4	-9.999	warm
7	6	300	330	0.254						
8	6	330	400	0.508	15	0	0	0	-9.999	neither
9	6	400	430	0.254						
10	6	430	500	0.508	15	2	1	1	0.442	cold
11	6	500	530	1.016	15	12	0	12	-9.999	warm
12	6	530	600	1.016	15	12	0	12	-9.999	warm
13	6	600	630	1.778	15	15	0	15	-9.999	warm
14	6	630	700	1.778	15	15	0	15	-9.999	warm
15	6	700	730	1.778	15	12	2	10	2.032	warm
16	6	730	800	1.524	15	5	0	5	-9.999	warm
17	6	800	830	1.27	15	0	0	0	-9.999	neither
18	6	830	900	0.508	15	0	0	0	-9.999	neither
19	6	900	930	0.254						

4 August 2008

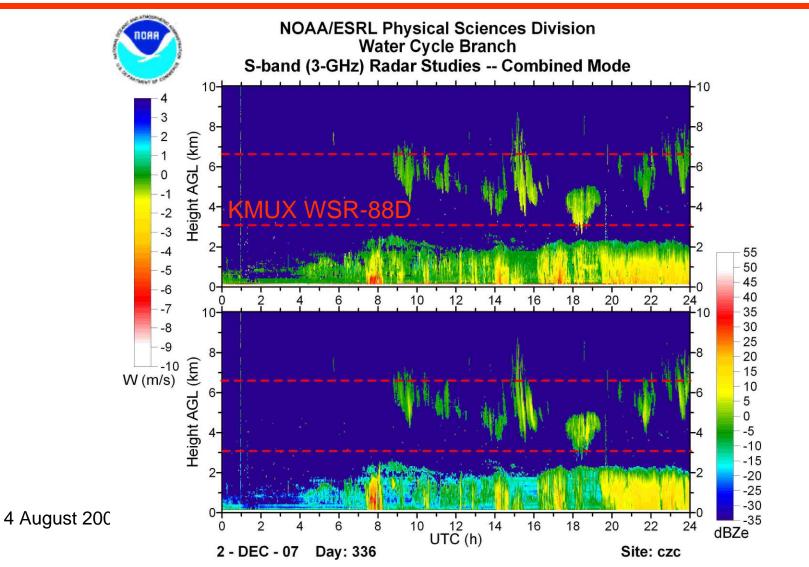
16

4 August 2008

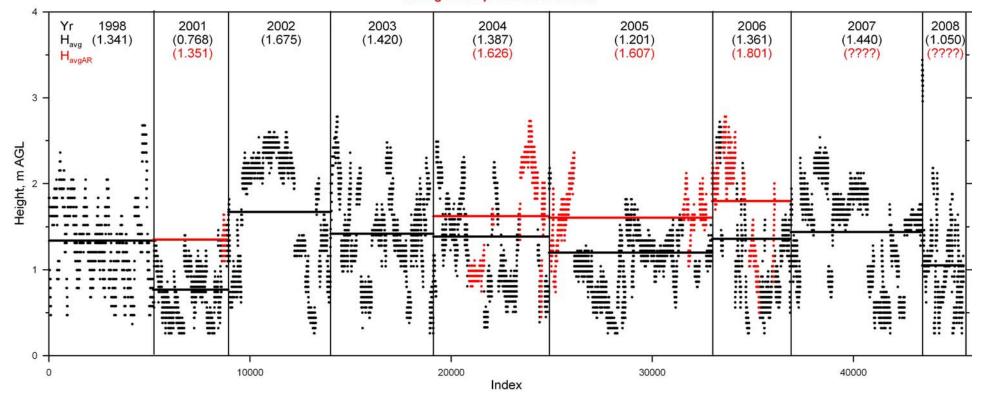
39.20 N, 120.82 W, 1085 m

Why do we study NBB rain?

• Nonbrightband rain contributes up to 45% of total rainfall...

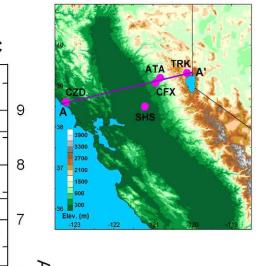

Table 2. Number of operating days for each S-band radar, and rainfall (mm) for the various rainfall types at each of the S-band sites.

Location and Year	# op. days	Total	Rain- fall per day	NBB	вв	Cold	Collision- coalesce	Con- vec- tive	Msg. due to ice/snow issues
CZD-98	90	1841.2	20.5	513.0	1097.0	292.0	1318.0	133.0	35.1
CZD-01	56	662.9	11.8	101.6	415.0	153.9	362.7	41.4	69.9
BBY-01	56	284.5	5.1	63.2	173.0	108.2	128.0	22.1	0.0
MBO-01/02	60	617.2	10.3	74.2	341.2	232.7	182.7	1.8	124.7
CZD-01/02	112	748.8	6.7	339.4	307.8	18.5	628.7	31.5	4.8
GVY-02	82	321.6	3.9	105.4	191.2	94.7	201.9	2.3	8.1
CZD-02/03	122	1343.9	11.0	532.9	768.0	13.5	1215.9	53.6	2.8
CZD-03/04	100	1161.0	11.6	469.7	560.6	288.8	741.4	81.3	0.0
BBY-03/04	103	571.8	5.6	180.1	292.3	123.4	349.0	65.0	0.0
CZD-04/05	142	776.7	5.5	202.7	417.1	52.8	566.9	72.4	12.4
CZD-05/06	162	2166.4	13.4	743.5	1027.2	151.1	1619.5	222.0	34.8
ATA-05/06	131	1987.6	15.2	292.9	1014.0	495.0	811.8	78.0	458.2
CZD-06/07	151	954.5	6.3	333.8	450.6	48.5	735.8	88.6	19.8
ATA-06/07	187	1058.7	5.7	194.6	442.5	308.4	328.7	23.6	315.7
CZD-07/08	141	1203.9	8.5	328.7	717.8	116.6	929.9	86.9	17.5
ATA-07/08	132	713.2	5.4	48.3	230.6	184.9	49.3	1.0	349.0
CFC-07/08	160	664.2	4.2	54.6	302.5	200.2	157.0	4.8	111.5

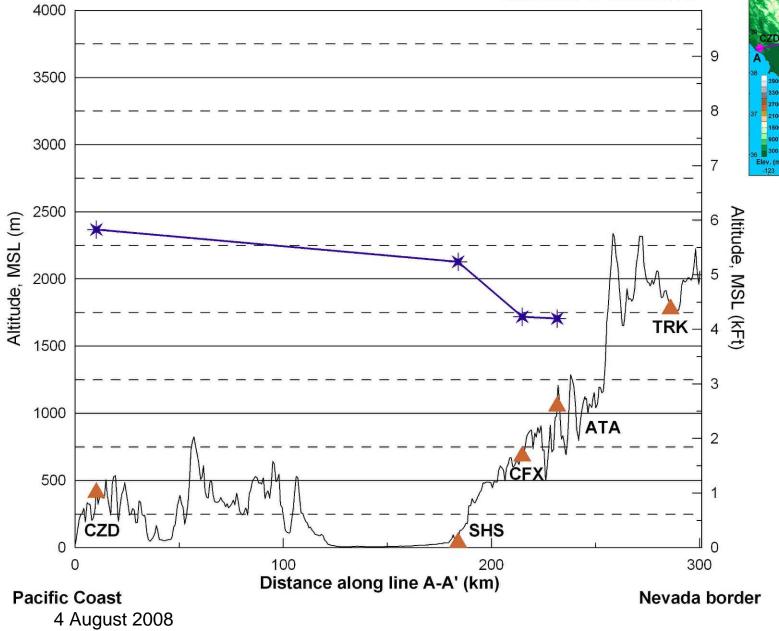

Neiman et al., 2005, MWR

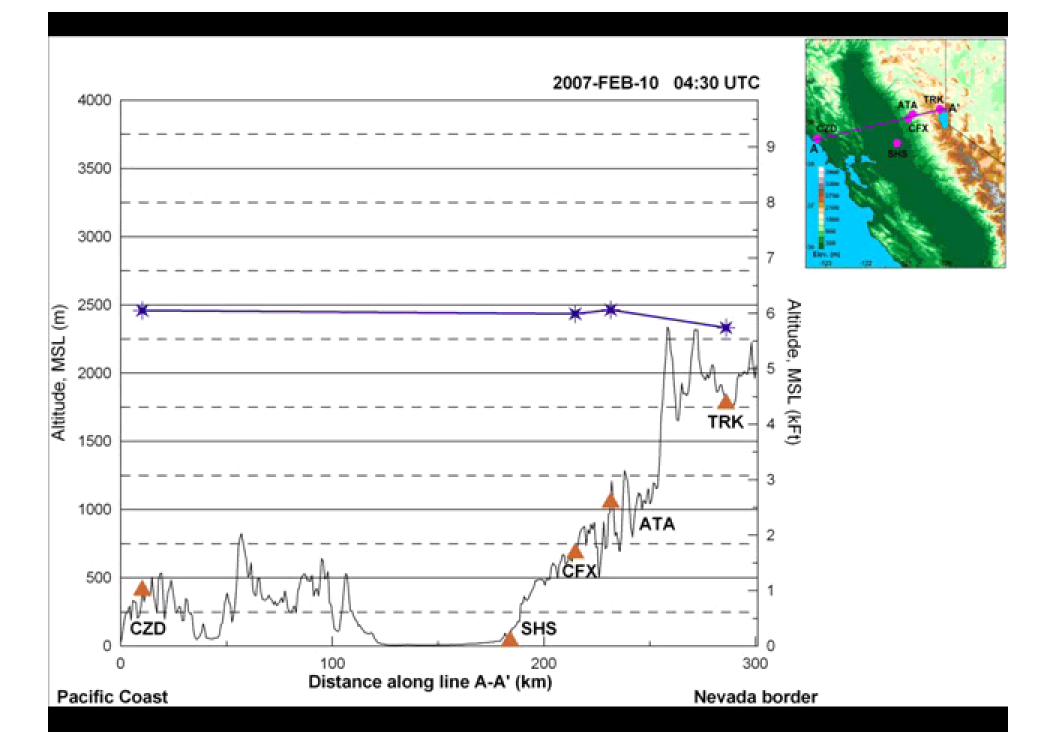
...and we can't see it.

18


Time series of all bright-band heights at CZD from half-hour periods when at least 80% of the profiles identified as rain contained a bright band During atmospheric river events

4 August 2008




Plotting Snow Level Variability

- Learned a new object-based language for use with Golden software (Grapher)
- Wrote script to create two templates and to plot horizontal variability in brightband height
- These plots can be used to look for correlations between the sites on the coast, or in the valley, versus the mountainous sites.

2006-DEC-9 04:30 UTC

Next Steps

- Graduate in May 2009
- Work in the field (research or private industry)
- Attend graduate school

Summary

- A brightband is a layer of enhanced radar reflectivity.
- The brightband height is the altitude of the maximum in radar reflectivity, and is used to approximate the snow level.
- Rainfall process partitioning identifies periods of brightband and nonbrightband rain.

Summary

- Plots of reflectivity were used to:
 - QC rainfall process partitioning.
 - QC brightband heights.
- I created plots of brightband height variability.

Acknowledgements

- Partners in crime:
 - -Allen White
 - Dan Gottas, David Kingsmill, Paul Neiman, Bob Zamora

This research was supported by an appointment to the National Oceanic and Atmospheric Administration Research Participation Program through a grant award to Oak Ridge Institute for Science and Education.

Bibliography

- White, Allen B., Daniel J. Gottas, Eric T. Strem, F. Martin Ralph, and Paul J. Neiman. "An Automated Brightband Height Detection Algorithm for Use with Doppler Radar Spectral Moments." <u>Journal of</u> <u>Atmospheric and Ocean Technology</u> 19 (2002): 687-696.
- White, Allen B., Paul J. Neiman, F. Martin Ralph, David E. Kingsmill, and P. Olga G. Persson. "Coastal Orographic Rainfall Processes Observed by Radar During the California Land-Falling Jets Experiment." <u>Journal of Hydrometeorology</u> 4 (2003): 264-282.
- White, Allen B., James R. Jordan, Brooks E. Martner, F. Martin Ralph, and Bruce W. Bartram. "Extending the Dynamic Range of an S-Band Radar for Cloud and Precipitation Studies." <u>Journal of</u> <u>Atmospheric and Ocean Technology</u> 17 (2000): 1226-1234.